Structural Properties, Order–Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms

نویسندگان

  • Doris E. Braun
  • Karol P. Nartowski
  • Yaroslav Z. Khimyak
  • Kenneth R. Morris
  • Stephen R. Byrn
  • Ulrich J. Griesser
چکیده

Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order-disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic structure of orotic acid I. Geometry, conformational preference and tautomerism

The molecular geometry of orotic acid was fully optimized using the gradient minimization technique. The computed geometrical parameters at the B3LYP/6-311G** level correspond well to those determined experimentally by X-ray diffraction. The relative stability of both the syn and anti conformations was investigated at the B3LYP/6-311G** level, where the syn-form was shown to be slightly more st...

متن کامل

X-Ray, Crystal Structure and Solution Phase Studies of a Polymeric SrII Compound

In the crystal structure of the title polymeric compound, [C42H38N6O33Sr5.2(H2O)]n, five independent metal atoms (Sr1-Sr5) have different coordination environments. The Sr1 and Sr5 atoms are nine coordinated and feature distorted tricapped trigonal-prismatic and capped square-antiprismatic geometries, respectively....

متن کامل

Computational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers

This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...

متن کامل

Interconversion of different molecular weight forms of human erythrocyte orotidylate decarboxylase.

Orotidylate decarboxylase has been purified approximately 300-fold from human erythrocytes. It was shown to exist in three molecular weight forms, a probable monomer of molecular weight 62,000, a dimer, and a tetramer. Conversion of the monomer to higher molecular weight forms was associated with increased stability to thermal inactivation and was promoted by a number of low molecular weight co...

متن کامل

Effect of Annealing Temperature on the Structural, Magnetic and Optical Properties of SrCo2Fe16O27 Hexaferrite Nanostructure

In this paper, W-type SrCo2Fe16O27 hexaferrite nanostructures were synthesized by sol-gel auto-combustion method. Effect of annealing temperature on the structural, magnetic and optical properties of these SrCo2Fe16O27 nanostructures was investigated. In order to determine the annealing temperature of samples, the prepared gel was examined by thermo-gravimetric and differential-thermal analyses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2016